The Space Race (, ) was a 20th-century competition between the Cold War rivals, the United States and the Soviet Union, to achieve superior spaceflight capability. It had its origins in the ballistic missile-based nuclear arms race between the two nations following World War II and the onset of the Cold War. The technological advantage demonstrated by spaceflight achievement was seen as necessary for national security, particularly in regard to intercontinental ballistic missile and satellite reconnaissance capability, but also became part of the cultural symbolism and ideology of the time. The Space Race brought pioneering launches of artificial satellites, robotic landers to the Moon, Venus, and Mars, and human spaceflight in low Earth orbit and ultimately to the Moon.
Public interest in space travel originated in the 1951 publication of a Soviet youth magazine and was promptly picked up by US magazines. The competition began on July 30, 1955, when the United States announced its intent to launch artificial for the International Geophysical Year. Four days later, the Soviet Union responded by declaring they would also launch a satellite "in the near future". The launching of satellites was enabled by developments in ballistic missile capabilities since the end of World War II. The competition gained Western public attention with the "Sputnik crisis", when the USSR achieved the first successful satellite launch, Sputnik 1, on October 4, 1957. It gained momentum when the USSR sent the first human, Yuri Gagarin, into space with the orbital flight of Vostok 1 on April 12, 1961. These were followed by a string of other firsts achieved by the Soviets over the next few years.
Gagarin's flight led US president John F. Kennedy to raise the stakes on May 25, 1961, by asking the US Congress to commit to the goal of "landing a man on the Moon and returning him safely to the Earth" before the end of the decade. Both countries began developing super heavy-lift launch vehicles, with the US successfully deploying the Saturn V, which was large enough to send a three-person orbiter and two-person lander to the Moon. Kennedy's Moon landing goal was achieved in July 1969, with the flight of Apollo 11. The USSR continued to pursue crewed lunar programs to launch and land on the Moon before the US with its N1 rocket but did not succeed, and eventually canceled it to concentrate on Salyut program, the first space station program, and the first landings on Venus and on Mars. Meanwhile, the US landed five more Apollo crews on the Moon, and continued exploration of other extraterrestrial bodies robotically.
A period of détente followed with the April 1972 agreement on a cooperative Apollo–Soyuz Test Project (ASTP), resulting in the July 1975 rendezvous in Earth orbit of a US astronaut crew with a Soviet cosmonaut crew and joint development of an international docking standard APAS-75. Being considered as the final act of the Space Race by many observers,Both the Apollo 11 Moon landing and the ASTP have been identified as the end of the Space Race, the competition was however only gradually replaced with cooperation. The collapse of the Soviet Union eventually allowed the US and the newly reconstituted Russian Federation to end their Cold War competition also in space, by agreeing in 1993 on the Shuttle– Mir and International Space Station programs.
Public interest in space flight was first aroused in October 1951 when the Soviet rocketry engineer Mikhail Tikhonravov published "Flight to the Moon" in the newspaper Pionerskaya pravda for young readers. He described a two-person interplanetary spaceship of the future and the industrial and technological processes required to create it. He ended the short article with a clear forecast of the future: "We do not have long to wait. We can assume that the bold dream of Konstantin Tsiolkovsky will be realized within the next 10 to 15 years." From March 1952 to April 1954, the US Collier's magazine reacted with a series of seven articles Man Will Conquer Space Soon! detailing Wernher von Braun's plans for crewed spaceflight. In March 1955, Disneyland's animated episode "Man in Space" which was broadcast on US television with an audience of about 40 million people, eventually fired the public enthusiasm for space travel and raised government interest, both in the US and USSR.
In August 1949, the Soviet Union became the second nuclear power after the United States with the successful RDS-1 nuclear weapon test. In October 1957, the Soviet Union conducted the world's first successful test of an intercontinental ballistic missile (ICBM), this was the R-7 Semyorka (also known as SS-6 by NATO) and was seen as capable of striking U.S. territory with a nuclear payload. Fears in the US due to this perceived threat became known as the Missile gap. The first American ICBM, the Atlas missile, was tested in late 1958.
ICBMs presented the ability to strike targets on the other side of the globe in a very short amount of time and in a manner which was impervious to air interception such as bombers might have been. The value which ICBMs presented in a nuclear standoff were very substantial, and this fact greatly accelerated efforts to develop rocket and rocket interception technology.
Further development was carried out in the 1930s by the Group for the Study of Reactive Motion (GIRD), where Soviet rocket pioneers Sergey Korolev, Friedrich Zander, Mikhail Tikhonravov and Leonid Dushkin launched GIRD-X, the first Soviet liquid-fueled rocket in 1933. In 1933 the two OKB were combined into the Reactive Scientific Research Institute and produced the RP-318, the USSR's first rocket-powered aircraft and the RS-82 and RS-132 missiles, which became the basis for the Katyusha multiple rocket launcher, During the 1930s Soviet rocket technology was comparable to Germany's, but Joseph Stalin's Great Purge from 1936 to 1938 severely damaged its progress.
In 1945 the Soviets captured several key Nazi Germany A-4 (V-2) rocket production facilities, and also gained the services of some German scientists and engineers related to the project. A-4s were assembled and studied and the experience derived from assembling and launching A4 rockets was directly applied to the Soviet copy, called the R-1, with NII-88 chief designer Sergei Korolev overseeing the R-1's development., The R-1 entered into service in the Soviet Army on 28 November 1950. By the latter half of 1946, Korolev and rocket engineer Valentin Glushko had, with extensive input from German engineers, outlined a successor to the R-1, the R-2 with an extended frame and a new engine designed by Glushko, which entered service in November, 1951, with a range of , twice that of the R-1. This was followed in 1951 with the development of the R-5 Pobeda, the Soviet Union's first real strategic missile, with a range of and capable of carrying a 1 megaton (mt) thermonuclear warhead. The R-5 entered service in 1955. Scientific versions of the R-1, R-2 and R-5 undertook various experiments between 1949 and 1958, including flights with space dogs.
Design work began in 1953 on the R-7 Semyorka with the requirement for a missile with a launch mass of 170 to 200 tons, range of 8,500 km and carrying a nuclear warhead, powerful enough to launch a nuclear warhead against the United States. In late 1953 the warhead's mass was increased to 5.5 to 6 tons to accommodate the then planned theromonuclear bomb. The R-7 was designed in a two-stage configuration, with four boosters that would jettison when empty. On the 21 August 1957 the R-7 flew , and became the worlds's first intercontinental ballistic missile. Two months later the R-7 launched Sputnik 1, the first artificial satellite, into orbit, and became the basis for the R-7 family which includes Sputnik, Luna, Molniya, Vostok, and Voskhod space launchers, as well as later Soyuz variants. Several versions are still in use and it has become the world's most reliable space launcher.
Each of the United States armed services had its own ICBM development program. The Air Force began ICBM research in 1945 with the MX-774. In 1950, von Braun began testing the Air Force PGM-11 Redstone rocket family at Cape Canaveral. By 1957, a descendant of the Air Force MX-774 received top-priority funding. and evolved into the Atlas-A, the first successful American ICBM. The Atlas made use of a thin stainless steel fuel tank which relied on the internal pressure of the tank for structural integrity, this allowed an overall lighter weight design. WD-40 was developed to prevent rust on the Atlas rockets so that rust protecting paint could be avoided, to further reduce weight.
A later variant of the Atlas, the Atlas-D, served as a nuclear ICBM and as the orbital launch vehicle for Project Mercury and the remote-controlled Agena Target Vehicle used in Project Gemini.
The Soviet space program's use of secrecy served as both a tool to prevent the leaking of classified information between countries, and to avoid revealing specifics to the Soviet populace in regards to their short and long term goals; the program's nature embodied ambiguous messages concerning its goals, successes, and values. Launches were not announced until they took place, cosmonaut names were not released until they flew, and outside observers did not know the size or shape of their rockets or cabins of most of their spaceships, except for the first Sputniks, lunar probes, and Venus probe.
The Soviet military maintained control over the space program; Korolev's OKB-1 design bureau was subordinated under the Ministry of General Machine Building, tasked with the development of intercontinental ballistic missiles, and continued to give its assets random identifiers into the 1960s. Information about failures was systematically withheld, historian James Andrews notes that Soviet media coverage of the space program, particularly human space missions, rarely reported any failures or difficulties, creating the impression of a flawless operation:
"With almost no exceptions, coverage of Soviet space exploits, especially in the case of human space missions, omitted reports of failure or trouble".Dominic Phelan noted in the book Cold War Space Sleuths (Springer-Praxis 2013): "The USSR was famously described by Winston Churchill as 'a riddle, wrapped in a mystery, inside an enigma
Korolev was buoyed by the first successful launches of the R-7 rocket in August and September, which paved the way for the launch of Sputnik. Word came that the US was planning to announce a major breakthrough at an International Geophysical Year conference at the National Academy of Sciences in Washington D.C., with a paper titled "Satellite Over the Planet", on October 6, 1957. Korolev anticipated that von Braun might launch a Jupiter-C with a satellite payload on or around October 4 or 5, in conjunction with the paper. He hastened the launch, moving it to October 4. The launch vehicle for PS-1 was a modified R-7 – vehicle 8K71PS number M1-PS – without much of the test equipment and radio gear that was present in the previous launches. It arrived at the Soviet missile base Tyura-Tam in September and was prepared for its mission at launch site number one.
The first launch took place on Friday, October 4, 1957, at exactly 10:28:34 pm Moscow time, with the R-7 and the now named Sputnik 1 satellite lifting off the launch pad and placing the artificial "moon" into an orbit a few minutes later. This "fellow traveler", as the name is translated in English, was a small, beeping ball, less than two feet in diameter and weighing less than 200 pounds. But the celebrations were muted at the launch control center until the down-range far east tracking station at Yelizovo received the first distinctive beep ... beep ... beep sounds from Sputnik 1s radio transmitters, indicating that it was on its way to completing its first orbit. About 95 minutes after launch, the satellite flew over its launch site, and its radio signals were picked up by the engineers and military personnel at Tyura-Tam: that's when Korolev and his team celebrated the first successful artificial satellite placed into Earth-orbit.
The next satellite sent by the Soviets after Sputnik 1 was Sputnik 2, launched on November 3, 1957, just a month later. This would put the first animal into orbit.
Eisenhower ordered project Vanguard to move up its timetable and launch its satellite much sooner than originally planned. The December 6, 1957 Project Vanguard launch failure occurred at Cape Canaveral Air Force Station in Florida. It was a monumental failure, exploding a few seconds after launch, and it became an international joke. The satellite appeared in newspapers under the names Flopnik, Stayputnik, Kaputnik,O'Neill, Terry. The Nuclear Age. San Diego: Greenhaven, Inc., 2002.(146) and Dudnik.Knapp, Brian. Journey into Space. Danbury: Grolier, 2004.(17) In the United Nations, the Soviet delegate offered the US representative aid "under the Soviet program of technical assistance to backwards nations." Only in the wake of this very public failure did von Braun's Redstone team get the go-ahead to launch their Jupiter-C rocket as soon as they could. In Britain, the US's Western Cold War ally, the reaction was mixed: some celebrated the fact that the Soviets had reached space first, while others feared the destructive potential that military uses of spacecraft might bring.Barnett, Nicholas. '"Russia Wins Space Race": The British Press and the Sputnik Moment', Media History, (2013) 19:2, 182–95. The Daily Express predicted that the US would catch up to and pass the USSR in space; "never doubt for a moment that America would be successful".
On October 21, 1959, Eisenhower approved the transfer of the Army's remaining space-related activities to NASA. On July 1, 1960, the Redstone Arsenal became NASA's George C. Marshall Space Flight Center, with von Braun as its first director. Development of the Saturn rocket family, which when mature gave the US parity with the Soviets in terms of lifting capability, was thus transferred to NASA.
The USSR sent the dog Laika into orbit on Sputnik 2, the second satellite launched, on November 3, 1957, for an intended ten-day flight. They did not yet have the technology to return Laika safely to Earth, and the government reported Laika died when the oxygen ran out, but in October 2002 her true cause of death was reported as stress and overheating on the fourth orbit due to failure of the air conditioning system. At a Moscow press conference in 1998 Oleg Gazenko, a senior Soviet scientist involved in the project, stated "The more time passes, the more I'm sorry about it. We did not learn enough from the mission to justify the death of the dog...".Dick Abadzis, afterword to Laika, First Second, 2007,
The US first embarked on the Pioneer program in 1958 by launching the first probe, albeit ending in failure. A subsequent probe named Pioneer 1 was launched with the intention of orbiting the Moon only to result in a partial mission success when it reached an apogee of 113,800 km before falling back to Earth. The missions of Pioneer 2 and Pioneer 3 failed whereas Pioneer 4 had one partially successful lunar flyby in March 1959.
On April 12, 1961, the USSR surprised the world by launching Yuri Gagarin into a single, 108-minute orbit around the Earth in a craft called Vostok 1. They dubbed Gagarin the first cosmonaut, roughly translated from Russian and Greek as "sailor of the universe". Gagarin's capsule was flown in automatic mode, since doctors did not know what would happen to a human in the weightlessness of space; but Gagarin was given an envelope containing the code that would unlock manual control in an emergency.
Gagarin became a national hero of the Soviet Union and the Eastern Bloc, and a worldwide celebrity. Moscow and other cities in the USSR held mass demonstrations, the scale of which was second only to the World War II Victory Parade of 1945.Pervushin (2011), 7.1 Гражданин мира April 12 was declared Cosmonautics Day in the USSR, and is celebrated today in Russia as one of the official "Commemorative Dates of Russia." In 2011, it was declared the International Day of Human Space Flight by the United Nations.
The USSR demonstrated 24-hour launch pad turnaround and launched two piloted spacecraft, Vostok 3 and Vostok 4, in essentially identical orbits, on August 11 and 12, 1962. The two spacecraft came within approximately of one another, close enough for radio communication, but then drifted as far apart as . The Vostok had no maneuvering rockets to keep the two craft a controlled distance apart. Vostok 4 also set a record of nearly four days in space. The first woman, Valentina Tereshkova, was launched into space on Vostok 6 on June 16, 1963, as (possibly) a medical experiment. She was the only one to fly of a small group of female parachutist factory workers (unlike the male cosmonauts who were military test pilots), chosen by the head of cosmonaut training because he read a tabloid article about the "Mercury 13" group of women wanting to become astronauts, and got the mistaken idea that NASA was actually entertaining this. Five months after her flight, Tereshkova married Vostok 3 cosmonaut Andriyan Nikolayev, and they had a daughter.
The Mercury spacecraft's principal designer was Maxime Faget, who started research for human spaceflight during the time of the NACA. It consisted of a conical capsule with a cylindrical pack of three solid-fuel strapped over a beryllium or fiberglass heat shield on the blunt end. Base diameter at the blunt end was and length was ; with the launch escape system added, the overall length was . With of habitable volume, the capsule was just large enough for a single astronaut. The first suborbital spacecraft weighed ; the heaviest, Mercury-Atlas 9, weighed fully loaded. On reentry, the astronaut would stay in the craft through splashdown by parachute in the Atlantic Ocean.
On May 5, 1961, Alan Shepard became the first American in space, launching in a ballistic trajectory on Mercury-Redstone 3, in a spacecraft he named Freedom 7. Though he did not achieve orbit like Gagarin, he was the first person to exercise manual control over his spacecraft's attitude and retro-rocket firing. After his successful return, Shepard was celebrated as a national hero, honored with parades in Washington, New York and Los Angeles, and received the NASA Distinguished Service Medal from President John F. Kennedy.
American Gus Grissom repeated Shepard's suborbital flight in Liberty Bell 7 on July 21, 1961. Almost a year after the Soviet Union put a human into orbit, astronaut John Glenn became the first American to orbit the Earth, on February 20, 1962. His Mercury-Atlas 6 mission completed three orbits in the Friendship 7 spacecraft, and splashed down safely in the Atlantic Ocean, after a tense reentry, due to what falsely appeared from the telemetry data to be a loose heat-shield. On February 23, 1962, President Kennedy awarded Glenn with the NASA Distinguished Service Medal in a ceremony at Cape Canaveral Air Force Station. As the first American in orbit, Glenn became a national hero, and received a ticker-tape parade in New York City, reminiscent of that given for Charles Lindbergh.
The United States launched three more Mercury flights after Glenn's: Aurora 7 on May 24, 1962, duplicated Glenn's three orbits, Sigma 7 on October 3, 1962, six orbits, and Faith 7 on May 15, 1963, 22 orbits (32.4 hours), the maximum capability of the spacecraft. NASA at first intended to launch one more mission, extending the spacecraft's endurance to three days, but since this would not beat the Soviet record, it was decided instead to concentrate on developing Project Gemini.
Gagarin's flight changed this; now Kennedy sensed the humiliation and fear on the part of the American public over the Soviet lead. Additionally, the Bay of Pigs invasion, planned before his term began but executed during it, was an embarrassment to his administration due to the colossal failure of the US forces.Roger D. Launius and Howard E. McCurdy, eds, Spaceflight and the Myth of Presidential Leadership (Champaign, IL: University of Illinois Press, 1997), 56. Looking for something to save political face, he sent a memo dated April 20, 1961, to Vice President Lyndon B. Johnson, asking him to look into the state of America's space program, and into programs that could offer NASA the opportunity to catch up.Kennedy to Johnson, "Memorandum for Vice President," April 20, 1961. The two major options at the time were either the establishment of an Earth orbital space station or a crewed landing on the Moon. Johnson, in turn, consulted with von Braun, who answered Kennedy's questions based on his estimates of US and Soviet rocket lifting capability. Based on this, Johnson responded to Kennedy, concluding that much more was needed to reach a position of leadership, and recommending that the crewed Moon landing was far enough in the future that the US had a fighting chance to achieve it first.
Kennedy ultimately decided to pursue what became the Apollo program, and on May 25 took the opportunity to ask for Congressional support in a Cold War speech titled "Special Message on Urgent National Needs". He justified the program in terms of its importance to national security, and its focus of the nation's energies on other scientific and social fields. He rallied popular support for the program in his "We choose to go to the Moon" speech, on September 12, 1962, before a large crowd at Rice University Stadium, in Houston, Texas, near the construction site of the new Lyndon B. Johnson Space Center facility.
Khrushchev responded to Kennedy's challenge with silence, refusing to publicly confirm or deny the Soviets were pursuing a "Moon race". As later disclosed, the Soviet Union secretly pursued two competing crewed lunar programs. Soviet Decree 655–268, On Work on the Exploration of the Moon and Mastery of Space, issued in August 1964, directed Vladimir Chelomei to develop a Moon flyby program with a projected first flight by the end of 1966, and directed Korolev to develop the Moon landing program with a first flight by the end of 1967. In September 1965, Chelomei's flyby program was assigned to Korolev, who redesigned the cislunar mission to use his own Soyuz 7K-L1 spacecraft and Chelomei's Proton rocket. After Korolev's death in January 1966, another government decree of February 1967 moved the first crewed flyby to mid-1967, and the first crewed landing to the end of 1968.
Some cooperation in robotic space exploration nevertheless did take place, such as a combined Venera 4– Mariner 5 data analysis under a joint Soviet–American working group of COSPAR in 1969, allowing a more complete drawing of the profile of the atmosphere of Venus. Eventually the Apollo–Soyuz mission was realized afterall, which furthermore laid the foundations for the Shuttle-Mir program and the ISS.
As President, Johnson steadfastly pursued the Gemini and Apollo programs, promoting them as Kennedy's legacy to the American public. One week after Kennedy's death, he issued renaming the Cape Canaveral and Apollo launch facilities after Kennedy.
In 1963, the Soviet Union's "2nd Generation" Luna programme was less successful than the earlier Luna probes; Luna 4, Luna 5, Luna 6, Luna 7, and Luna 8 were all met with mission failures. However, in 1966 the Luna 9 achieved the first soft-landing on the Moon, and successfully transmitted photography from the surface. Luna 10 marked the first man-made object to establish an orbit around the Moon, followed by Luna 11, Luna 12, and Luna 14 which also successfully established orbits. Luna 12 was able to transmit detailed photography of the surface from orbit. Luna 10, 12, and Luna 14 conducted Gamma ray spectrometry of the Moon, among other tests.
The was orchestrated alongside the Luna programme with Zond 1 and Zond 2 launching in 1964, intended as flyby missions, however both failed. Zond 3 however was successful, and transmitted high quality photography from the far side of the moon.
Partly to aid the Apollo missions, the Surveyor program was conducted by NASA, with five successful soft landings out of seven attempts from 1966 to 1968. The Lunar Orbiter program had five successes out of five attempts in 1966–1967.
In late 1966, Luna 13 became the third spacecraft to make a soft-landing on the Moon, with the American Surveyor 1 having now taken second. Luna 13 made use of inflatable air-bags to soften it's landing. Surveyor 1 was a 995 kg lander, notably larger than the 112 kg Luna 13 E-6M lander. Surveyor 1 was equipped with a Doppler velocity sensing system that fed information into the spacecraft computer to implement a controllable descent to the surface. Each of the three landing pads also carried aircraft-type shock absorbers and strain gauges to provide data on landing characteristics, important for future Apollo missions.
Surveyor 3, which successfully touched down on the Moon April 20, 1967, carried a 'surface sampler' which facilitated tests of the Lunar soil. Based on these experiments, scientists concluded that lunar soil had a consistency similar to wet sand, with a bearing strength of about 10 pounds per square inch (0.7 kilograms per square centimeter, or 98 kilopascals), which was concluded to be solid enough to support an Apollo Lunar Module. The Surveyor 3 lander would be later visited by Apollo 12 astronauts.
On Nov. 17, 1967, before mission termination, Surveyor 6 fired its thrusters for 2.5 seconds, becoming the first spacecraft launched from the lunar surface. It rose about 10 feet (3 meters) before landing 8 feet (2.5 meters) west of its original spot. Cameras then examined the original landing site to assess the soil's properties.
In 1961 the Venera was initiated by the Soviet Union, with the launch of Venera 1. The programme would go on to mark many firsts in the exploration of another planet. Despite the later successes however, Venera 1 and Venera 2, intended to flyby Venus, resulted in failure due to losses of contact.
NASA would then initiate the Mariner program with the launch of Mariner 1 and Mariner 2. Mariner 1 failed shortly after launch, however Mariner 2 would become the first man-made object to flyby another planet in December 1962 when the probe passed by Venus.
Later in 1965/66, Venera 3, marked the first time a man-made object made contact with another planet after it impacted Venus on March 1, 1966, despite operational difficulties resulting in loss of contact with the craft.
In 1967, Mariner 5 flew by Venus and conducted atmospheric analysis.
Meanwhile, Korolev had planned further long-term missions for the Vostok spacecraft, and had four Vostoks in various stages of fabrication in late 1963 at his OKB-1 facilities. The Americans' announced plans for Gemini represented major advances over the Mercury and Vostok capsules, and Korolev felt the need to try to beat the Americans to many of these innovations. He had already begun designing the Vostok's replacement, the next-generation Soyuz, a multi-cosmonaut spacecraft that had at least the same capabilities as the Gemini spacecraft. Soyuz would not be available for at least three years, and it could not be called upon to deal with this new American challenge in 1964 or 1965. Political pressure in early 1964which some sources claim was from Khrushchev while other sources claim was from other Communist Party officialspushed him to modify his four remaining Vostoks to beat the Americans to new space firsts in the size of flight crews, and the duration of missions.
On March 18, 1965, about a week before the first piloted Project Gemini space flight, the USSR launched the two-cosmonaut Voskhod 2 mission with Pavel Belyayev and Alexei Leonov. Voskhod 2's design modifications included the addition of an inflatable airlock to allow for extravehicular activity (EVA), also known as a spacewalk, while keeping the cabin pressurized so that the capsule's electronics would not overheat. Leonov performed the first-ever EVA as part of the mission. A fatality was narrowly avoided when Leonov's spacesuit expanded in the vacuum of space, preventing him from re-entering the airlock. To overcome this, he had to partially depressurize his spacesuit to a potentially dangerous level. He succeeded in safely re-entering the spacecraft, but he and Belyayev faced further challenges when the spacecraft's atmospheric controls flooded the cabin with 45% pure oxygen, which had to be lowered to acceptable levels before re-entry. The reentry involved two more challenges: an improperly timed retrorocket firing caused the Voskhod 2 to land off its designated target area, the city of Perm; and the instrument compartment's failure to detach from the descent apparatus caused the spacecraft to become unstable during reentry.
By October 16, 1964, Leonid Brezhnev and a small cadre of high-ranking Communist Party officials deposed Khrushchev as Soviet government leader a day after Voskhod 1 landed, in what was called the "Wednesday conspiracy". The new political leaders, along with Korolev, ended the technologically troublesome Voskhod program, canceling Voskhod 3 and 4, which were in the planning stages, and started concentrating on reaching the Moon. Voskhod 2 ended up being Korolev's final achievement before his death on January 14, 1966, as it became the last of the space firsts that the USSR achieved during the early 1960s. According to historian Asif Siddiqi, Korolev's accomplishments marked "the absolute zenith of the Soviet space program, one never, ever attained since." There was a two-year pause in Soviet piloted space flights while Voskhod's replacement, the Soyuz spacecraft, was designed and developed.
Gemini 8 experienced the first in-space mission abort on March 17, 1966, just after achieving the world's first docking, when a stuck or shorted thruster sent the craft into an uncontrolled spin. Command pilot Neil Armstrong was able to shut off the stuck thruster and stop the spin by using the re-entry control system. He and his crewmate David Scott landed and were recovered safely.
Most of the novice pilots on the early missions would command the later missions. In this way, Project Gemini built up spaceflight experience for the pool of astronauts for the Apollo lunar missions. With the completion of Gemini, the US had demonstrated many of the key technologies necessary to make Kennedy's goal of landing a man on the Moon, namely crewed spacecraft docking, with the exception of developing a large enough launch vehicle.
Officially, the Soviet lunar program was established on August 3, 1964, with the adoption of Soviet Communist Party Central Committee Command 655-268 ( On Work on the Exploration of the Moon and Mastery of Space). The circumlunar flights were planned to occur in 1967, and the landings to start in 1968, intending to land a person on the Moon before the Apollo flights. Both of the bureaus submitted their projects for a crewed lunar landing.
Korolev's lunar landing program was designated N1/L3, for its N1 super rocket and a more advanced Soyuz 7K-L3 spacecraft, also known as the lunar orbital module (" Lunniy Orbitalny Korabl", LOK), with a crew of two. A separate lunar lander (" Lunniy Korabl", LK), would carry a single cosmonaut to the lunar surface.
The N1/L3 launch vehicle had three stages to Earth orbit, a fourth stage for Earth departure, and a fifth stage for lunar landing assist. The combined space vehicle was roughly the same height and takeoff mass as the three-stage US Apollo-Saturn V and exceeded its takeoff thrust by 28% (45,400 kN vs. 33,000 kN.
Chelomey's program assumed using a direct ascent lander based on the LK-1, LK-700, which would be launched using his proposed UR-700 rocket. Following Khrushchev's ouster from power, Chelomey lost his support in the Soviet government, and his proposal didn't receive any funding. Additionally, in August 1965, due to Korolev's opposition, work on the LK-1 was suspended, and later stopped completely. As a replacement, the circumlunar mission would use a stripped-down Soyuz 7K-L1 "Zond", while still retaining the Proton UR-500 booster. To fit two crewmembers, the Zond had to omit the Soyuz orbital module, sacrificing equipment for habitable cabin volume.
On May 10, 1962, Vice President Johnson addressed the Second National Conference on the Peaceful Uses of Space revealing that the United States and the USSR both supported a resolution passed by the Political Committee of the UN General Assembly in December 1962, which not only urged member nations to "extend the rules of international law to outer space," but to also cooperate in its exploration. Following the passing of this resolution, Kennedy commenced his communications proposing a cooperative American and Soviet space program. Papers of John F. Kennedy. Presidential Papers. National Security Files. Subjects. Space activities: US/USSR cooperation, 1961–96
In 1963, the Partial Nuclear Test Ban Treaty was signed by more than 100 signatories, including both the United States and the Soviet Union. This treaty followed the US test of a nuclear bomb detonated in outer space the year earlier called Starfish Prime.
The UN ultimately created a Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies, which was signed by the United States, the USSR, and the United Kingdom on January 27, 1967, and came into force the following October 10. Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies: Status of the Treaty (UNODA)
This treaty:
The treaty remains in force, signed by 107 member states. –
The Soviet Union also fixed the parachute and control problems with Soyuz, and the next piloted mission Soyuz 3 was launched on October 26, 1968. The goal was to complete Komarov's rendezvous and docking mission with the un-piloted Soyuz 2. Ground controllers brought the two craft to within of each other, then cosmonaut Georgy Beregovoy took control. He got within of his target, but was unable to dock before expending 90 percent of his maneuvering fuel, due to a piloting error that put his spacecraft into the wrong orientation and forced Soyuz 2 to automatically turn away from his approaching craft. The first docking of Soviet spacecraft was finally realized in January 1969 by the Soyuz 4 and Soyuz 5 missions. It was the first-ever docking of two crewed spacecraft, and the first transfer of crew from one space vehicle to another.
The Soviet Zond spacecraft was not yet ready for piloted circumlunar missions in 1968, after six unsuccessful automated test launches: Kosmos 146 on March 10, 1967; Kosmos 154 on April 8, 1967; Zond 1967A on September 28, 1967; Zond 1967B on November 22, 1967; Zond 1968A on April 23, 1968; and Zond 1968B in July 1968. Zond 4 was launched on March 2, 1968, and successfully made a circumlunar flight, but encountered problems with its Earth reentry on March 9, and was ordered destroyed by an explosive charge over the Gulf of Guinea. The Soviet official announcement said that Zond 4 was an automated test flight which ended with its intentional destruction, due to its recovery trajectory positioning it over the Atlantic Ocean instead of over the USSR.
During the summer of 1968, the Apollo program hit another snag: the first pilot-rated Lunar Module (LM) was not ready for orbital tests in time for a December 1968 launch. NASA planners overcame this challenge by changing the mission flight order, delaying the first LM flight until March 1969, and sending Apollo 8 into lunar orbit without the LM in December. This mission was in part motivated by intelligence rumors the Soviet Union might be ready for a piloted Zond flight in late 1968. In September 1968, Zond 5 made a circumlunar flight with tortoises on board and returned safely to Earth, accomplishing the first successful water landing of the Soviet space program in the Indian Ocean. It also scared NASA planners, as it took them several days to figure out that it was only an automated flight, not piloted, because voice recordings were transmitted from the craft en route to the Moon. On November 10, 1968, another automated test flight, Zond 6, was launched. It encountered difficulties in Earth reentry, and depressurized and deployed its parachute too early, causing it to crash-land only from where it had been launched six days earlier. It turned out there was no chance of a piloted Soviet circumlunar flight during 1968, due to the unreliability of the Zonds.
On December 21, 1968, Frank Borman, Jim Lovell, and William Anders became the first humans to ride the Saturn V rocket into space, on Apollo 8. They also became the first to leave low-Earth orbit and go to another celestial body, entering lunar orbit on December 24. They made ten orbits in twenty hours, and transmitted one of the most watched TV broadcasts in history, with their Christmas Eve program from lunar orbit, which concluded with a reading from the biblical Book of Genesis. Two and a half hours after the broadcast, they fired their engine to perform the first trans-Earth injection to leave lunar orbit and return to the Earth. Apollo 8 safely landed in the Pacific Ocean on December 27, in NASA's first dawn splashdown and recovery.
The American Lunar Module was finally ready for a successful piloted test flight in low Earth orbit on Apollo 9 in March 1969. The next mission, Apollo 10, conducted a "dress rehearsal" for the first landing in May 1969, flying the LM in lunar orbit as close as above the surface, the point where the powered descent to the surface would begin. With the LM proven to work well, the next step was to attempt the landing.
Unknown to the Americans, the Soviet Moon program was in deep trouble. After two successive launch failures of the N1 rocket in 1969, Soviet plans for a piloted landing suffered delay. The launch pad explosion of the N-1 on July 3, 1969, was a significant setback. The rocket hit the pad after an engine shutdown, destroying itself and the launch facility. Without the N-1 rocket, the USSR could not send a large enough payload to the Moon to land a human and return him safely.
The trip to the Moon took just over three days. After achieving orbit, Armstrong and Aldrin transferred into the Lunar Module named Eagle, leaving Collins in the Command and Service Module Columbia, and began their descent. Despite the interruption of alarms from an overloaded computer caused by an antenna switch left in the wrong position, Armstrong took over manual flight control at about to correct a slight downrange guidance error, and set the Eagle down on a safe Tranquility Base at 20:18:04 UTC, July 20, 1969 (3:17:04 pm CDT). Six hours later, at 02:56 UTC, July 21 (9:56 pm CDT July 20), Armstrong left the Eagle to become the first human to set foot on the Moon.
The first step was witnessed on live television by at least one-fifth of the population of Earth, or about 723 million people. His first words when he stepped off the LM's landing footpad were, "That's one small step for a man, one giant leap for mankind." Aldrin joined him on the surface almost 20 minutes later. Altogether, they spent just under two and one-quarter hours outside their craft. Mission elapsed time (MET) from when Armstrong states that he will step off the LM at 109hrs:24mins:13secs to when Armstrong was back inside the LM at 111hrs:38mins:38sec The next day, they performed the first crewed launch from another celestial body, and rendezvoused back with Collins in Columbia. But before they return ascended the Space Race came to a particular culmination. A few days before Apollo 11 left Earth, the Soviet Union launched the Luna 15 probe, entering lunar orbit just before Apollo 11 and eventually sharing it with Apollo 11. Aware of Luna 15, Apollo 8 astronaut Frank Borman was asked to use his goodwill contacts in the Soviet Union to prevent any collision. Subsequently, in one of the first instances of Soviet–American space communication the Soviet Union released Luna 15's flight plan to ensure it would not collide with Apollo 11, although its exact mission was not publicized. But as Apollo 11 was wrapping up surface activities, the Soviet mission command hastened Luna 15 and attempted its robotic sample-return mission before Apollo 11 would return. As Luna 15 descended just two hours before Apollo 11's launch and impacted at 15:50 UTC some hundred kilometers away from Apollo 11, British astronomers monitoring Luna 15 recorded the situation, with one commenting:“I say, this has really been drama of the highest order”.
Apollo 11 left lunar orbit and returned to Earth, landing safely in the Pacific Ocean on July 24, 1969. When the spacecraft splashed down, 2,982 days had passed since Kennedy's commitment to landing a man on the Moon and returning him safely to the Earth before the end of the decade; the mission was completed with 161 days to spare. With the safe completion of the Apollo 11 mission, the Americans won the race to the Moon.
Armstrong and his crew became worldwide celebrities, feted with ticker-tape parades on August 13 in New York City and Chicago, attended by an estimated six million. That evening in Los Angeles they were honored at an official state dinner attended by members of Congress, 44 governors, the Chief Justice of the United States, and ambassadors from 83 nations. The President and Vice president presented each astronaut with the Presidential Medal of Freedom. The astronauts spoke before a joint session of Congress on September 16, 1969. This began a 38-day world tour to 22 foreign countries and included visits with the leaders of many countries.
The public's reaction in the Soviet Union was mixed. The Soviet government limited the release of information about the lunar landing, which affected the reaction. A portion of the populace did not give it any attention, and another portion was angered by it.
The first landing was followed by another, precision landing on Apollo 12 in November 1969, within walking distance of the Surveyor 3 spacecraft which landed on April 20, 1967.
In total the Apollo programme involved six crewed Moon landings from 1969 to 1972, and a total of twelve astronauts walked on the surface of the Moon. These were Apollo 11, Apollo 12, Apollo 14, Apollo 15, Apollo 16, and Apollo 17.
In February 1969, President Richard M. Nixon convened a "space task group" to set recommendations for the future US civilian space program, headed by his vice president, Spiro T. Agnew. Agnew was an enthusiastic proponent of NASA's follow-up plans for permanent in Earth and lunar orbit, perhaps a base on the lunar surface, and the first human flight to Mars as early as 1986 or as late as 2000. These would be serviced by an infrastructure of a reusable Space Transportation System, including an Earth-to-orbit Space Shuttle. Nixon had a 'better sense' of the declining political support in Congress for new Apollo-style programs, which had disappeared with the achievement of the landing, and he intended to pursue détente with the USSR and China, which he hoped might ease Cold War tensions. He cut the spending proposal he sent to Congress to include funding for only the Space Shuttle, with perhaps an option to pursue the Earth orbital space station for the foreseeable future.
AAP planners decided the Earth orbital workshop could be accomplished more efficiently by prefabricating it on the ground and launching it with a single Saturn V, which immediately eliminated Apollo 20. Budget cuts soon led NASA to cut Apollo 18 and 19 as well. Apollo 13 had to abort its lunar landing in April 1970 due to an in-flight spacecraft failure but returned its crew safely to Earth. The Apollo program made its final lunar landing in December 1972; the two unused Saturn Vs were used as outdoor visitor displays and allowed to deteriorate due to the effects of weathering.
The USSR continued trying to develop its N1 rocket, after two more launch failures in 1971 and 1972, finally canceling it in May 1974, without achieving a single successful uncrewed test flight.
The Soviet Union was also able to successfully land the first robotic rover on the Moon in 1970, followed by another in 1973, with the Lunokhod missions.
These missions demonstrated continued Soviet willingness to compete with the US in the space race despite having lost the manned Moon landing aspect of the space race.
The United States launched a single orbital workstation, Skylab, on May 14, 1973. It was launched using a leftover Saturn-5 rocket from the Apollo programme. Skylab weighed , was long by in diameter, and had a habitable volume of over . Skylab was damaged during the ascent to orbit, losing one of its solar panels and a meteoroid thermal shield. Subsequent crewed missions repaired the station, and conducted valuable research. The third and final mission's crew, Skylab 4, set a human endurance record (at the time) with 84 days in orbit when the mission ended on February 8, 1974. Skylab stayed in orbit another five years before reentering the Earth's atmosphere over the Indian Ocean and Western Australia on July 11, 1979.
Salyut 4 broke Skylab's occupation record at 92 days. Salyut 6 and Salyut 7 were second-generation stations designed for long duration, and were occupied for 683 and 816 days. Salyut 7 improved upon earlier designs by allowing long-duration crewed missions and more complex experiments. These stations, with their expanded crew capacity and amenities for long term stay, carrying electric stoves, a refrigerator, and constant hot water.
In 1975, Venera 9 established an orbit around Venus and successfully returned the first photography of the surface of Venus. Venera 10 landed on Venus and followed with further photography shortly after.
NASA initiated the Pioneer Venus project in 1978, successfully deploying four small probes into the Venusian atmosphere on December 9, 1978. The probes confirmed that Venus has little if any magnetic field, and cameras detected lightning in the atmosphere. The last transmissions were received on October 8, 1992, as its decaying orbit no longer permitted communications. The spacecraft burned up the atmosphere soon after, ending a successful 14-year mission that was planned to last only eight months.
In 1981, Venera 13 performed a successful soft-landing on Venus and marked the first probe to drill into the surface of another planet and take a sample. Venera 13 also took an audio sample of the Venusian environment, marking another first. Venera 13 returned the first color images of the surface of Venus, revealing an orange-brown flat bedrock surface covered with loose regolith and small flat thin angular rocks. Venera 14, an identical spacecraft to Venera 13, was launched 5 days apart with a similar mission profile.
In total ten Venera probes achieved a soft landing on the surface of Venus.
In 1984, the Soviet began and ended with the launch of two crafts launched six days apart, Vega 1 and Vega 2. Both crafts deployed a balloon in addition to a lander, marking a first in spaceflight.
The US never caught up or matched the Soviet efforts to explore the surface of Venus, but did claim the title of the first successful probe to have flown by the planet and had notable success with the Pioneer atmospheric probes.
In 1976, NASA followed suit, and put two successful landers on Mars. These were Viking 1 and Viking 2. These landers were significantly larger than the Soviet Mars landers (Viking 1 was 3,527 kilograms). They were able to take the first photographs from the surface of Mars.
Viking 1 operated on the surface of Mars for around six years (On November 11, 1982, the Lander stopped operating after getting a faulty command) and Viking 2 for over three years (mission ended in early 1980). Both landers were equipped with a robotic sampler arm which successfully scooped up soil samples and tested them with instruments such as a Gas chromatography–mass spectrometer. The landers measured temperatures ranging from negative 86 degrees Celsius before dawn to negative 33 degrees Celsius in the afternoon. Both landers had issues obtaining accurate results from their .
Photographs from the landers and orbiters surpassed expectations in quality and quantity. The total exceeded 4,500 from the landers and 52,000 from the orbiters.
The Viking landers recorded atmospheric pressures ranging from below 7 millibars (0.0068 bars) to over 10 millibars (0.0108 bars) over the Martian year, leading to the conclusion that atmospheric pressure varies by 30 percent during the Martian year because carbon dioxide condenses and sublimes at the polar caps. Martian winds generally blow more slowly than expected, scientists had expected them to reach speeds of several hundred miles an hour from observing global dust storms, but neither lander recorded gusts over 120 kilometers (74 miles) an hour, and average velocities were considerably lower. Nevertheless, the orbiters observed more than a dozen small dust storms. The Viking landers detected nitrogen in the atmosphere for the first time, and that it was a significant component of the Martian atmosphere. There was speculation from the atmospheric analysis that the atmosphere of Mars used to be much denser.
The Soviets did not match the Martian lander achievements of NASA, but did claim the title of the first lander.
The joint mission began when Soyuz 19 was first launched on July 15, 1975, at 12:20 UTC, and the Apollo craft was launched with the docking module six and a half hours later. The two craft rendezvoused and docked on July 17 at 16:19 UTC. The three astronauts conducted joint experiments with the two cosmonauts, and the crew shook hands, exchanged gifts, and visited each other's craft.
The Soviets interpreted the Shuttle as a military surveillance vehicle, and decided they had to develop their own shuttle, which they named Buran programme, beginning in 1974. They copied the aerodynamic design of NASA's Shuttle orbiter, which they strapped to the side of their expendable, liquid hydrogen-fueled Energia launcher. The Buran could be fitted with four Saturn AL-31 turbofan engines and a fuel tank in its payload bay, allowing it to make its own atmospheric test flights, which began in November 1985. Also unlike the US Shuttle, it could be flown pilotlessly and landed automatically. Energia-Buran made only one orbital test flight in November 1988, but US counterintelligence baited the Soviets with disinformation about the heat shield design, and it was not reusable for repeated flight. Buran was the largest and most expensive Soviet program in the history of the Space Race, and was effectively canceled by the collapse of the Soviet Union in 1991, due to lack of funding. The Energia was also canceled at the same time, after only two flights.
The USSR admitted its first female test pilot as a cosmonaut, Svetlana Savitskaya, in 1980. She became the first female to fly since Tereshkova, on Salyut 7 in December 1981.
The Moon race is often analyzed as a microcosm of the Space Race's broader dynamics. Historians such as Jennifer Frost argue that if the Space Race is measured in terms of overall spaceflight capability, the Soviet Union "won it hands down." Asif A. Siddiqi, a noted space historian, provides a more nuanced view, emphasizing the Soviet Union's dominance in smaller aspects of the race to the moon, yet critical, benchmarks such as the first lunar impact, first photos of the Moon's far side, first soft lunar landing, and first lunar orbit. These accomplishments laid the groundwork for lunar exploration, though they are often overshadowed by the Apollo 11 mission.
Before that landing Apollo, there was an enormous amount of investment in the robotic exploration of the Moon, both by the Soviets and the US, in terms of all sorts of smaller benchmarks like the first lunar impact, the first pictures of the far side of the Moon, the first soft lunar landing, and the first lunar orbit. We forget, but in those little races, the Soviet Union dominated almost every benchmark, but it is forgotten as the United States won the big one.
In 2023 the Russian Federation resumed the Luna missions as a part of the Luna-Glob programme with the launch of Luna 25 (47 years after the Soviet Luna 24), amidst American reignition of interest in the Moon with the Artemis program beginning with the launch of Artemis I in 2022.
|
|